Virtual Population Analysis

Hiroshi Hakoyama*

January 5, 2015

1 Backward calculation

$$
\begin{gather*}
\left(\begin{array}{c}
\text { Number alive } \\
\text { at beginning } \\
\text { of next year }
\end{array}\right)=\left(\begin{array}{c}
\text { number alive } \\
\text { at beginning } \\
\text { of this year }
\end{array}\right)-\left(\begin{array}{c}
\text { catch } \\
\text { this } \\
\text { year }
\end{array}\right)-\left(\begin{array}{c}
\text { natural } \\
\text { mortality } \\
\text { this year }
\end{array}\right) \tag{1}\\
\left(\begin{array}{c}
\text { Number alive } \\
\text { at beginning } \\
\text { of this year }
\end{array}\right)=\left(\begin{array}{c}
\text { number alive } \\
\text { at beginning } \\
\text { of next year }
\end{array}\right)+\left(\begin{array}{c}
\text { catch } \\
\text { this } \\
\text { year }
\end{array}\right)+\left(\begin{array}{c}
\text { natural } \\
\text { mortality } \\
\text { this year }
\end{array}\right) \tag{2}\\
N_{i}=f\left(N_{i+1}, C_{i}, D_{i}\right) \tag{3}
\end{gather*}
$$

For a single cohort of fish (all fish hatched at the same time), if we know the catch of each year $C_{i}(i=1,2, \ldots, t-1)$, the natural mortality D_{i} and the number of oldest fish N_{t}, we can calculate the number of fish each year N_{i}, starting from the oldest ages and moving backward to the youngest.

2 Discrete Fisheries

$$
\begin{gather*}
N_{i}=N_{i+1}+C_{i}+D_{i} \tag{4}\\
D_{i}=N_{i}(1-s) \tag{5}\\
N_{i}=\frac{N_{i+1}+C_{i}}{s} \tag{6}
\end{gather*}
$$

[^0]
3 Continuous-time fishing and natural mortality

3.1 Cohort dynamics

Let N be the population of a cohort of fish at time t. The rate of population decrease is expressed as follows:

$$
\begin{equation*}
\frac{\mathrm{dN}}{\mathrm{dt}}=-\mathrm{ZN} \tag{7}
\end{equation*}
$$

where \mathbf{Z} is the instantaneous coefficient of total mortality. The solution of Eq.(7) is

$$
\begin{equation*}
N_{t}=N_{0} \exp \{-Z t\} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{N}_{\mathrm{t}}=\mathrm{N}_{\mathrm{i}} \exp \{-\mathbf{Z}(\mathrm{t}-\mathfrak{i})\} . \tag{9}
\end{equation*}
$$

Here we assume the mortality is decomposed into fishing mortality and natural mortality:

$$
\begin{equation*}
Z=F+M \tag{10}
\end{equation*}
$$

where F is the instantaneous coefficient of fishing mortality, and M is that of natural mortality. Both factors are independent.

3.2 Catch dynamics

Let h be the cumulative catch at time t. The dynamics of h is given by

$$
\begin{equation*}
\frac{\mathrm{dh}}{\mathrm{dt}}=\mathrm{FN} . \tag{11}
\end{equation*}
$$

The solution of Eq.(11) is given as follows:

$$
\begin{align*}
\int_{h_{i}}^{h_{i+1}} d h & =\int_{i}^{i+1} \mathrm{FNdt} \\
h_{i+1}-h_{i} & =F \int_{i}^{i+1} N_{i} \exp \{-Z(t-i)\} d t \\
& =\mathrm{FN}_{i} \frac{-1}{Z}[\exp \{-Z(t-i)\}]_{i}^{i+1} \\
& =\mathrm{FN}_{i} \frac{-1}{Z}(\exp \{-\mathrm{Z}\}-1) \\
C_{i}=h_{i+1} & -h_{i}=\frac{F}{F+M} N_{i}(1-\exp \{-Z\}), \tag{12}
\end{align*}
$$

where C_{i} is yearly catch; catch from time i to $i+1$.

3.3 Gulland's Virtual Population Analysis

The VPA model is based on following two formulae:

$$
\begin{gather*}
N_{i+1}=N_{i} \exp \left\{-\left(F_{i}+M\right)\right\} \tag{13}\\
C_{i}=N_{i} \frac{F_{i}\left(1-\exp \left\{-\left(F_{i}+M\right)\right\}\right)}{F_{i}+M} \tag{14}
\end{gather*}
$$

In this case, we can not calculate the explicit function $N_{i}=f\left(N_{i+1}, C_{i}, M\right)$ from Eqs. $(13,14)$, so we have to find N_{i} numerically.

Note that we have a solution for F from Eq.(13),

$$
\begin{equation*}
F_{i}=-\log \frac{N_{i+1}}{N_{i}}-M \tag{15}
\end{equation*}
$$

4 Pope's approximation

Pope's approximation for the VPA model assumes instantaneous midyear fishery (Fig. 1).

Figure 1: Instantaneous midyear fishery
Figure 1 indicates that the population size at time $\mathfrak{i}+0.5$ multiplied by the survival rate equals the population size at time $i+1$:

$$
\begin{equation*}
N_{i+1}=\left(N_{i} \exp \left\{-\frac{M}{2}\right\}-C_{i}\right) \exp \left\{-\frac{M}{2}\right\} \tag{16}
\end{equation*}
$$

Thus, $N_{i}=f\left(N_{i+1}, C_{i}, M\right)$ can be expressed as follows:

$$
\begin{equation*}
N_{i}=N_{i+1} \exp M+C_{i} \exp \left\{\frac{M}{2}\right\} \tag{17}
\end{equation*}
$$

5 Example: The Pacific stock of walleye pollock

5.1 Model

Here we consider multiple cohorts. Let $\mathrm{N}_{\mathrm{a}, \mathrm{i}}$ be the number of fish at age a and year i.

$$
\begin{gather*}
N_{a+1, i+1}=N_{a, i} \exp \left\{-\left(F_{a, i}+M_{a}\right)\right\}, \tag{18}\\
N_{a, i}=N_{a+1, i+1} \exp M_{a}+C_{a, i} \exp \left\{\frac{M_{a}}{2}\right\}, \tag{19}\\
F_{a, l}=\frac{1}{3}\left(F_{a, l-3}+F_{a, l-2}+F_{a, l-1}\right), \tag{20}\\
F_{k, i}=F_{k-1, i}, \tag{21}\\
N_{a, l}=\frac{F_{a, l}+M_{a}}{F_{a, l}} C_{a, l} \frac{1}{\left(1-\exp \left\{-\left(F_{a, l}+M_{a}\right)\right\}\right)}, \tag{22}\\
N_{k, i}=\frac{F_{k+, i}+M_{k+}}{F_{k+, i}} C_{k+, i}, \tag{23}
\end{gather*}
$$

where a is age $(a=0,1,2, \ldots, k-1, k)$. k is the last age of a year-class $(k=8)$. $k+$ indicates the plus group which includes older ages $k, k+1, k+2, \ldots . i$ is year $(i=1981,1982, \ldots, 1998)$. The latest year l is 1998. Appendix A shows the derivation of Eq.(23).

5.2 Procedure

- Assume arbitrary $F_{k+, l}$ (e.g., $F_{k+, l}=1$)
- Calculate $N_{k, l}=\frac{F_{k+, l}+M_{k+}}{F_{k+, l}} C_{k+, l}$
- Calculate $\mathrm{N}_{\mathrm{k}-1, \mathrm{l}-1}, \mathrm{~N}_{\mathrm{k}-2, \mathrm{l}-2, \ldots}$ using Eq.(19)
- Calculate $F_{k-1, l-1}, F_{k-2, l-2}, \ldots$ using $F_{a, i}=-\log \frac{N_{a+1, i+1}}{N_{a, i}}-M_{a}$
- Calculate $F_{k, l-1}$ using $F_{k, l-1}=F_{k-1, l-1}$
- Calculate $\mathrm{N}_{\mathrm{k}-1, \mathrm{l}-2}, \mathrm{~N}_{\mathrm{k}-2, \mathrm{l}-3}, \ldots$ and $\mathrm{F}_{\mathrm{k}-1, \mathrm{l}-2}, \mathrm{~F}_{\mathrm{k}-2, \mathrm{l}-3}, \ldots$
- Calculate all N and F to backward likewise
- Calculate $F_{k-1, l}=\frac{1}{3}\left(F_{k-1, l-1}+F_{k-1, l-2}+F_{k-1, l-3}\right)$
- Calculate $N_{k-1, l}=\frac{F_{k-1, l}+M_{k-1}}{F_{k-1, l}} C_{k-1, l} \frac{1}{\left(1-\exp \left\{-\left(F_{k-1, l}+M_{k-1}\right)\right\}\right)}$
- Calculate all N and F to backward likewise
- Lastly calculate $F_{k, l}$ to be $F_{k, l}=F_{k-1, l}$ using excel solver

6 Appendix A

Let $\mathrm{N}_{\mathrm{k}+, \mathrm{t}}$ be the number of fish of the plus group $\mathrm{k}+$ at time t . $\mathrm{N}_{\mathrm{k}+, \mathrm{t}}$ and $\mathrm{C}_{\mathrm{k}+, \mathrm{t}}$ are expressed as:

$$
\begin{gather*}
\mathrm{N}_{\mathrm{k}+, \mathrm{t}+1}=\mathrm{N}_{\mathrm{k}-1, \mathrm{t}} \exp \left\{-\left(\mathrm{Z}_{\mathrm{k}-1}\right)\right\}+\mathrm{N}_{\mathrm{k}, \mathrm{t}} \exp \left\{-\left(\mathrm{Z}_{\mathrm{k}}\right)\right\}+\mathrm{N}_{\mathrm{k}+1, \mathrm{t}} \exp \left\{-\left(\mathrm{Z}_{\mathrm{k}+1}\right)\right\}+\ldots, \tag{24}\\
\mathrm{C}_{\mathrm{k}+, \mathrm{t}+1}=\mathrm{C}_{\mathrm{k}, \mathrm{t}}+\mathrm{C}_{\mathrm{k}+1, \mathrm{t}}+\mathrm{C}_{\mathrm{k}+2, \mathrm{t}}+\ldots \tag{25}
\end{gather*}
$$

Using Eqs. $(13,14)$, we have

$$
\begin{equation*}
N_{i}=\frac{C_{i} Z_{i}}{F_{i}}+N_{i+1} \tag{26}
\end{equation*}
$$

thus,

$$
\begin{aligned}
N_{i} & =\frac{C_{i} Z_{i}}{F_{i}}+N_{i+1} \\
& =\frac{C_{i} Z_{i}}{F_{i}}+\frac{C_{i+1} Z_{i+1}}{F_{i+1}}+N_{i+2} \\
& =\frac{C_{i} Z_{i}}{F_{i}}+\frac{C_{i+1} Z_{i+1}}{F_{i+1}}+\frac{C_{i+2} Z_{i+2}}{F_{i+2}}+N_{i+3}
\end{aligned}
$$

Note that $\lim _{k \rightarrow \infty} N_{i+k}=0$. Therefore, if we assume that $F_{i}=F_{i+1}=\ldots=$ F_{i+}, the number of fish of age i is expressed as:

$$
\begin{aligned}
N_{i} & =\left(C_{i}+C_{i+1}+\ldots\right) \frac{Z_{i+}}{F_{i+}} \\
& =C_{i+} \frac{Z_{i+}}{F_{i+}}
\end{aligned}
$$

[^0]: *FRA

